2,837 research outputs found

    Stochastic evolution of four species in cyclic competition

    Full text link
    We study the stochastic evolution of four species in cyclic competition in a well mixed environment. In systems composed of a finite number NN of particles these simple interaction rules result in a rich variety of extinction scenarios, from single species domination to coexistence between non-interacting species. Using exact results and numerical simulations we discuss the temporal evolution of the system for different values of NN, for different values of the reaction rates, as well as for different initial conditions. As expected, the stochastic evolution is found to closely follow the mean-field result for large NN, with notable deviations appearing in proximity of extinction events. Different ways of characterizing and predicting extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Talking About Looking: Three Approaches to Interviewing Carers of People With Rheumatoid Arthritis About Information Seeking

    Get PDF
    © 2016 The Author(s). Given the profusion of illness-related information, in this article, we consider how talking about information seeking - and in particular Internet use - is difficult, not because it is necessarily a highly sensitive topic (though it may be), but rather due to the unusual and unfamiliar situation of talking about information seeking. Drawing on interviews conducted as part of a study on the educational needs of carers of people with rheumatoid arthritis, we compare three types of interview for understanding online information seeking: interviews (recall), researcher-led observation (joining participant at the computer), and diaries. We discuss the strengths and weaknesses of each approach and discuss how changing interview questions and the form of interaction can help to produce different types of data, and potentially more meaningful insights. Of the three approaches, conducting interviews with participants while looking at a computer (talking while looking) offered the best opportunities to understand Internet-based information seeking

    What makes re-finding information difficult? A study of email re-finding

    Get PDF
    Re-nding information that has been seen or accessed before is a task which can be relatively straight-forward, but often it can be extremely challenging, time-consuming and frustrating. Little is known, however, about what makes one re-finding task harder or easier than another. We performed a user study to learn about the contextual factors that influence users' perception of task diculty in the context of re-finding email messages. 21 participants were issued re-nding tasks to perform on their own personal collections. The participants' responses to questions about the tasks combined with demographic data and collection statistics for the experimental population provide a rich basis to investigate the variables that can influence the perception of diculty. A logistic regression model was developed to examine the relationships be- tween variables and determine whether any factors were associated with perceived task diculty. The model reveals strong relationships between diculty and the time lapsed since a message was read, remembering when the sought-after email was sent, remembering other recipients of the email, the experience of the user and the user's ling strategy. We discuss what these findings mean for the design of re-nding interfaces and future re-finding research

    The fundamental cycle of concept construction underlying various theoretical frameworks

    Get PDF
    In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning

    ff-minimal surface and manifold with positive mm-Bakry-\'{E}mery Ricci curvature

    Full text link
    In this paper, we first prove a compactness theorem for the space of closed embedded ff-minimal surfaces of fixed topology in a closed three-manifold with positive Bakry-\'{E}mery Ricci curvature. Then we give a Lichnerowicz type lower bound of the first eigenvalue of the ff-Laplacian on compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature, and prove that the lower bound is achieved only if the manifold is isometric to the nn-shpere, or the nn-dimensional hemisphere. Finally, for compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature and ff-mean convex boundary, we prove an upper bound for the distance function to the boundary, and the upper bound is achieved if only if the manifold is isometric to an Euclidean ball.Comment: 15 page

    Pseudoclassical description of the massive Dirac particles in odd dimensions

    Get PDF
    A pseudoclassical model is proposed to describe massive Dirac (spin one-half) particles in arbitrary odd dimensions. The quantization of the model reproduces the minimal quantum theory of spinning particles in such dimensions. A dimensional duality between the model proposed and the pseudoclassical description of Weyl particles in even dimensions is discussed.Comment: 12 pages, LaTeX (RevTeX

    Affective Experiences of International and Home Students during the Information Search Process

    Get PDF
    An increasing number of students are studying abroad requiring that they interact with information in languages other than their mother tongue. The UK in particular has seen a large growth in international students within Higher Education. These non-native English speaking students present a distinct user group for university information services, such as university libraries. This article presents the findings from an in-depth study to understand differences between the search processes of home and international students. Data were collected using an online survey and diary-interview to capture thoughts and feelings in a more naturalistic way. International students are found to have similar information search processes to those of home students, but sometimes face additional difficulties in assessing search results such as confusion when dealing with differing cultural perspectives. The potential implications for information service providers, particularly university libraries, are discussed, such as providing assistance to students for identifying appropriate English sources

    Renormalization of the Inverse Square Potential

    Get PDF
    The quantum-mechanical D-dimensional inverse square potential is analyzed using field-theoretic renormalization techniques. A solution is presented for both the bound-state and scattering sectors of the theory using cutoff and dimensional regularization. In the renormalized version of the theory, there is a strong-coupling regime where quantum-mechanical breaking of scale symmetry takes place through dimensional transmutation, with the creation of a single bound state and of an energy-dependent s-wave scattering matrix element.Comment: 5 page
    • 

    corecore